THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2017–2018) Introduction to Topology

Exercise 6 Complete and Baire Category

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Do the exercises mentioned in lectures or in lecture notes.
- 2. Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence such that the set $\{x_n: n\in\mathbb{N}\}$ has a cluster point. What can you conclude about the sequence.
- 3. If both X and Y are complete metric spaces, is the product metric space $X \times Y$ complete? Note that there are many ways to define the product metric.
- 4. Let $\mathcal{B}[a,b]$ be the set of bounded functions on the interval [a,b] and

$$d_{\infty}(f,g) = \sup_{t \in [a,b]} ||f(t) - g(t)||.$$

Show that $(\mathcal{B}[a,b],d_{\infty})$ is a complete metric space.

5. Let $\mathcal{C}[a,b]$ be the set of continuous functions on the interval [a,b] and

$$d_1(f,g) = \int_a^b |f(t) - g(t)| dt$$
.

Show that $(\mathcal{C}[a,b],d_1)$ is not complete.

- 6. Explore the possible relation between a contraction mapping and a one-to-one mapping.
- 7. Let $f: X \to Y$ be uniformly continuous and $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in X. Show that $(f(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in Y.
- 8. Let d be a metric on a space X and $x_0 \in X$. Is the function $f(x) = d(x, x_0)$ uniformly continous?
- 9. In a discrete space, find all the dense sets and all the nowhere dense sets.
- 10. Show that the followings are equivalent:
 - \bullet A is dense
 - The only open set contained in $X \setminus A$ is \emptyset
 - The only closed set containing A is X
- 11. Let $N \subset X$ be nowhere dense. Show that every open set $U \subset X$ contains an open set $V \subset U$ such that $V \cap N = \emptyset$.

- 12. Show that \mathbb{Z} with the standard metric d(m,n) = |m-n| is of second category. Note: this does not contradict that \mathbb{Z} is nowhere dense in \mathbb{R} .
- 13. Show that if $\{N_k\}_{k=1}^n$ is a finite family of nowhere dense sets, then $\bigcup_{k=1}^n N_k$ is also nowhere dense.
- 14. Let X be of second category. If $\{N_k\}_{k\in\mathbb{N}}$ is a countable family of nowhere dense sets, then there exists a point $x\in X$ such that $x\not\in\bigcup_{k\in\mathbb{N}}N_k$.
- 15. Are there statements about first and second category of $X \times Y$ with reference to the categories of X and Y?
- 16. Show that $A \subset X$ is open dense if and only if $X \setminus A$ is closed nowhere dense. Give counter examples if the open/closed condition is dropped.
- 17. Let $f \colon X \to Y$ be a continuous mapping.
 - (a) If $D \subset X$ is dense, is $f(D) \subset Y$ dense?
 - (b) If $N \subset X$ is nowhere dense, is $f(N) \subset Y$ nowhere dense?
 - (c) What about pre-images of a dense set and a nowhere dense set?
 - (d) What can you conclude about image or pre-image of a set of first or second category?